

Sistemi GNSS

GLONASS

GLONASS

Sistema Russo

1982: primi lanci dei satelliti

Anni '90: il declino del sistema

Oggi: il sistema è completamente

attivo

Vantaggi

I satelliti operano principalmente nell'emisfero settentrionale.

Rapporto segnale – rumore più forte, quindi meno problemi di multipath.

Non è degradato, né crittografato.

GPS + GLONASS aumentano le precisioni e diminuiscono i tempi di acquisizione del segnale.

Confronto	onto GPS		
N° satelliti in orbita	24 sat; 6 piani, 4 per ogni piano	24 sat; 3 piani, 8 per ogni piano	
Inclinazione piani orbitali	55°	64°	
Raggio orbita	circa 20.000 km	circa 19.000 km	
Tempo rivoluzione	circa 12 ore	circa 11 ore	
Funzionamento	Trilaterazione	Trilaterazione	
Orologi	Tutti sincronizzati	Tutti sincronizzati	

L'ora GPS non è sincronizzata con l'ora GLONASS per cui nasce una nuova incognita.

Confronto	GPS	GPS+GLONASS
Tempo inizializzazione (warm start)	47 secondi	27 secondi
Satelliti visibili con cut-off 10°	90%	100%
Satelliti visibili con cut-off 30° (tipo zone urbane e boschive)	15 %	70 %

UPKEEP THE ALPS

GALILEO

GALILEO

Sistema civile di navigazione satellitare.

Indipendente ma compatibile con GPS e GLONASS.

Precisione di 1 metro.

Costo sviluppo = 3,2 miliardi di euro

Costo mantenimento = 200 milioni di euro l'anno

Ritorni economici = 80 miliardi di euro nel corso dei primi 20 anni

Perché un sistema di posizionamento europeo?

- Mancanza di garanzia sulla qualità e continuità del servizio
- Marginalità del segnale in zone urbane e nelle regioni situate ad elevata latitudine
- Insufficiente precisione dei segnali per applicazioni civili
- Prestigio
- Economici

Struttura del sistema

- Segmento spaziale
- Segmento di terra
- Segmento utente

Segmento spaziale

- 30 satelliti su 3 piani orbitali
- Inclinati di 56° rispetto al piano equatoriale terrestre
- In orbita MEO (24000 Km)
- Peso pari a 700 kg
- Potenza 1,5 Kw
- Apertura pannelli solari 12 metri
- Tempo di vita 12 anni

Satellite a bordo

Ha 2 equipaggiamenti con la funzione di:

- generare il segnale di navigazione (oltre quelli per telemetria)
- ricevere e trasmettere il segnale per la funzione Ricerca e Soccorso

Segmento da terra

- Controllo della costellazione
- Controllo della missione

Controllo della missione

- Generazione del messaggio di navigazione da inviare ai satelliti
- Integrità del segnale (qualità del dato trasmesso dal satellite)

Segmento utente

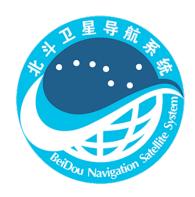
- Varie tipologie ricevitori
- Servizio Ricerca e Soccorso
- Componenti locali per migliorare precisione (Local Element, A- Gps)

<u>GALILEO</u>

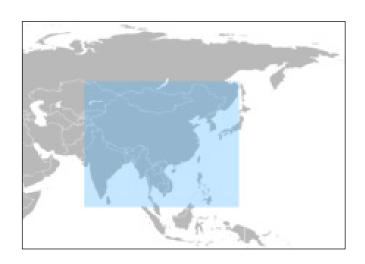
Galileo fornirà precisione e garanzie di qualità e continuità tramite 4 livelli di servizio:

- **OPEN ACCESS SERVICE**, servizio di base gratuito, con prestazioni compatibili all'equivalente a GPS e GLONASS, per applicazioni destinate al pubblico
- **COMMERCIAL SERVICE**, ad accesso controllato per applicazioni commerciali e professionali con prestazioni superiori e garanzia di continuità del servizio (a pagamento)
- **PUBBLIC SERVICE**, per applicazioni ad elevato livello di protezione che non devono subire alcuna interruzione o nterferenza (integrità del segnale)
- RICERCA E SOCCORSO (più preciso rispetto a quello usato ora da USA)

Altri sistemi satellitari


BEI DOU

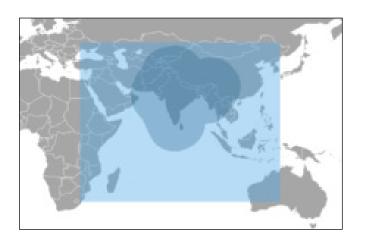
Il sistema di posizionamento cinese



BEI DOU 1

- 4 satelliti (3 operativi + 1 riserva)
- Orbita geostazionaria
- Scala regionale
- Primo lancio: 2000
- Completamento costellazione: 2005
- Precisione stimata (fonte cinese): 0,5 m

PKEEP THE ALPS


- Nome precedente: COMPASS
- Servizio di posizionamento GLOBALE
- Data attivazione: Dicembre 2012
 Completamento: 2020
- Composizione a regime: 35 satelliti (5 geostazionari, 27 in orbita media e 3 in orbita geosincrona inclinata)
- Precisione: territorio cinese 10 m territori contigui 20 m

Sistema di posizionamento indiano

- NAVIC (ex IRNSS)
 (NAVigation with Indian Costellation)
- 7 satelliti + supporto terrestre
 (3 geostazionari + 4 orbita geosincrona)
- Costo = 190 milioni €
- Precisione = circa 20 m su territorio indiano fino a 1500 km intorno allo stesso

Sistema di posizionamento giapponese

- QZSS (Sistema satellitare Quasi-Zenith)
- 4 satelliti geosincroni
- In fase di sviluppo
- Primo lancio: Settembre 2010
 Operatività: 2018
- Entro il 2019 verrà integrato col sistema europeo GALILEO

Confronto tra sistemi satellitari

SISTEMA	Gps	Glonass	Galileo	BeiDou1/2	NAVIC (IRNSS)
Proprietario	Stati Uniti	Fed.ne Russa	Unione Europea	China	India
Datum geodetico	WGS84	PZ-90	WGS84		
Errore minimo	5 m	5 m	1 m	10 m	20 m
Altitudine orbitale	20,180 km	19,130 km	23,222 km	21,150 km	36,000 km
Periodo orbitale	11 h 58 min	11 h 16 min	14 h 5 min	12 h 38 min	23 h 56 min
Satelliti in orbita	31	27	24	23	7
Satelliti previsti	24	24	26	35	7
Stato	Operativo	Operativo	Operativo	Operativo (2020)	Operativo
Copertura attiva	Globale	Globale	Globale	Loc. (globale)	Locale

Aggiornamento del GPS

<u>Aggiornamento del GPS</u>

2005: Ristrutturazione della Portante L2
Introduzione di due codici addizionali
L2CM(Civil Moderate) e L2CL (Civil Long)
Nuovi codici Militari M su frequenze L1 e L2
(per ridurre le interferenze intenzionali)
Nuovo messaggio navigazionale DC

Signal	IIR 1978-2003	IIR-M 2005 (atteso)	IIF 2006 (atteso)
L1 C/A	X	X	X
L1 P(Y)	X	X	X
L1 M		X	X
L2 C		X	X
L2 P(Y)	X	X	X
L2 M		X	X
L5 C			X

2006: Introduzione del segnale L5 per assicurare la continuità del servizio nel campo dell'aviazione Civile

2020: Separazione completa dei servizi di posizionamento civile da quelli militari. Si dovranno aggiornare o sostituire ricevitori GPS per poter sfruttare le nuove potenzialità.

ING. GIORGIO MERONI - ING. MARCO TAGLIABUE